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1. Introduction to Post-Stall Aerodynamics

Fighter aircraft have evolved for decades toward high speeds and
high wing loadings. Advances in air-to-air weapons are bringing that
line of evolution to a halt, and the advantage is passing to fighter
with lower wing loadings and great agility. The new design direction is
apparent in the F-16XL shown in figure 1.1. The Rockwell model in
figure 1.2 displays further concessions to maneuverability.

Herbst (1980) has introduced the concept of "supermaneuverability”
to characterize the design of future fighters. Supermaneuverability has
two aspects: decoupling of orientation from flight path to allow the
aircraft to function as a rotating gun platform, and flight at angles of
attack far beyond the limits of stall.

Herbst uses simulated fighter engagements to assess the merits of
post-stall (PST) maneuvers. Figure 1.3 shows time histories of speed V
and angle of attack o for a PST fighter engaging a normal adversary.
The engagement begins with the fighters approaching each other at a
closing speed of 200 m/sec. The PST fighter executes a 1800 turn at an
of 900, broadside to his flight path. His engine thrust balances
centrifugal force as his flight speed drops to 20 m/sec. Realigning his
thrust with his new flight path, he accelerates up the flight path of
his hapless adversary.

Flight at such large angles introduces phenomena outside the
boundaries of traditional aerodynamics. Some of those phenomena are
evident in figure 1.4:

® Flow separates all around the planform edges. This produces the
bag-shaped vortex sheet shown in cross section in figure 1.4,
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® Viscous effects are unimportant; a consequence of the violent

and unambiguous separation on all salient edges of the planform.

® Pressure force is normal to the planform owing to a complete

loss of leading-edge suction.

® The vortex sheet shed from the aircraft is strong, with a

velocity jump comparable to the speed V of the aircraft.

® Shed vorticity interacts strongly with the aircraft, probably

creating "vortex 1ift" like vorticity shed from leading edges of
delta wings.

® The vorticity around the aircraft is nonsteady. Kelvin-

Helmholtz instability of the vortex sheet precludes *he
attainment of a steady Helmholtz (free-streamiine) flow, with
dead air inside.

The phenomena above are beyond the reach of aerodynamic theories
predicated upon quasi-steady flow or small perturbations. Numerical
methods, as described here, almost certainly are required to handle the
nonsteady, nonlinear vortex flow surrounding a PST aircraft and to
predict the resulting aerodynamic forces.

PO R
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2. Theoretical Foundations
a. Theorems

Our study of post-stall aerodynamics begins with the Euler
equations for inviscid incompressible flow:

oy
p(—+g'vy,)+vp = f , (2.1)
at

veouy = 0 . (2.2)

In these equations p 1is density, p is pressure, u is velocity, and

f is a force per unit volume exerted on the fluid by some external

agency. The continuity equation (2.2) presumes that p 1Js constant,
an adequate approximation for low-speed maneuvers though not for
transonic flight. The assumption of inviscid flow is warranted only if
we can devise side conditions that accurately represent the conversion
of boundary-layer vorticity into free vorticity at planform edges, a
matter discussed in part (c) of this chapter.

Equations (2.1) and (2.2) apply to fluid outside the aircraft
surface, on which normal velocity boundary conditions are imposed.
Conceptually and computationally, it is often convenient to regard the
fluid as filling all space, with (2.1) and (2.2) applying everywhere,
and with the aircraft surface represented by some distribution of
singularities, sources and bound vortex sheets being popular choices.
Completely equivalent to a vortex sheet is a dipole sheet, which is a
volumetric force concentrated on the surface of the body and distributed
over the surface so as to enforce the normal velocity boundary
condition. Such a representation is achieved by writing f as

f o= spés(m i , (2.3)
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where Ap 1is the pressure jump across the dipole sheet, &(n) is a
delta function of the normal coordinate n, and ﬁ is the unit outward
normal vector. The pressure jump Ap is a function of time and of two
surface coordinates and is tailored to insure that

u .

P33

= Vp o, (2.4)

where v, 1s the local normal component of boundary velocity. With
this representation, equations (2.1) and (2.2) apply throughout a
hypothetical unbounded fluid pervading the aircraft body.

Recall that f 1is a volumetric force exerted by an external agency
(the aircraft) on the fluid. the net force exerted by the fluid on the
aircraft is therefore given by the volume integral

Fo= - ‘/pildv , (2.5)

v

where the region of integration V extends over all space. A similar
formula provides the net moment exerted by the fluid on the aircraft:

’M':-./‘Lx,f‘dv. (2.6)

v

The dipole representation (2.3) allows an immediate evaluation of F
and M without a need for computing pressure.

There is no simple integral relation between F or M and u,

because u does not fall toward zero fast enough to permit a proper
evaluation of integrals 1ike

Page 8
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There are, however, simple relations of F and M to vorticity u, the
curl of the velocity field:

W =Vxu . (2.7)

Vorticity w 1is a complete flow representation when u is divergence
free. Velocity may then be written as the curl of a vector potential

3

=
n
<
>
e

(2.8)
with j
ot - (2.9)

Given g, one solves the Poisson equation (2.9) for ¥, from which u
follows by (2.8). Of course @ includes both actual “free" vorticity
we in the fluid, and "bound" vorticity wp associated with the dipole

sheet representing the body:

w T wht wf - (2.10)

~

wp 1s the concentrated vortex sheet that would appear in a vortex-p2nel
code. -

Yorticity evolves according to an equation obtained by taking the
curl of (2.1):

Ik

dw
—~+U - Jw-w- V4 = ¥xg (2.11)
ot =

Page 9
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where
g = i/p . (2.12)

We can derive a relation between F and x x w by taking the cross-
product of x with (2.11) and integrating over all space, using the
facts that w and g are zero outside some finite region. The net
moment ﬂ bears a corresponding relaticn witn XXX Xw. Appendix A
shows how the integral relationships are derived.

The force and moment theorems must be derived separately for two
and three-dimensional flows, because a two-dimensional vorticity field
is unbounded in the third dimension, which changes the convergence
properties of integrals. A two-dimensional field of vorticity aligned
with the z-axis has tne form

w = wix,y, t) & . (2.13)

Net force per unit length in the z-direction has the form

d
F o= - p= x x (wgz) dA (2.14)
dt
A

where the intagration extends over the full (x, y) plane, or at least
over aevery part containing non-zero vorticity. Moment per unit length
has the form

p d
ﬂ Z e — (x2 + yz) (Qéz) dA (2.15)
2 dt
A

directed along the z-axis. Those are reactions exerted on the aircraft
by the fluid.
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The corresponding results in three dimensions are as follows:

p d
F = == — ‘/fx X wdv (2.16)
- 2 dt ~ T
: v
pd
M =2 - = ‘/ﬁé'x (5'x Q) dav . (2.17)
3 dt
v

Equations (2.14), (2.15) or (2.16), (2.17) allow us to evaluate forces
and moments from vorticity without the intervention of pressure.

Page 11




e ———— ~————

o -

Poseidon Research Report No. 81
b. Applications in Two Dimensions

Figure 2.1 shows a typical situation where we might want to apply
the theorems of part (a) in two dimensions. A thin airfoil starts from
rest, shedding vorticity from its trailing edge and possibly from its

leading edge. The airfoil can be represented as a sheet of bound
vorticity,

wp(x, y, t) = v(s, t) &{(n) , (2.18)

where s and n are coordinatas parallel and normal to the airfoil
respectively, &(n) is the delta function expressing the concentration
of the bound vortex sheet, and Y(s, t) is the velocity jump from the
bottom to the top of the airfoil:

Y = up-up . (2.19)

According to the Kelvin circulation theorem, the net vorticity over
the entire plane remains zero for all time if the flow starts from rest:

r = /(wb +wf) dA = 0 . (2.20)
A

Equation (2.20) is an important constraint on the assignment of bound
vorticity to represent the airfoil. The drag and 1ift on the airfoil
follow fr n (2.14):

d
D = -p— Yiwp + wf) dA (2.21)
dt
A
d
L = p— /x(wb + we) dA . (2.22)
dt
A
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If the airfoil eventually stops shedding vorticity, then the free
vorticity wf wraps into a starting vortex with constant circulation
and a centroid fixed in space, i.e.

d
— fi(. wf A —=0 . (2.23)
dt

A

The bound vorticity becomes steady in coordinates (X = x + Vt, y)
moving leftward with the airfoil at its velocity V. Thus

d
D —=-p— [/y wp(X, y) dXdy =0, (2.24)
dt

and

d

e f (X - VE) wp(X, -y) dXdy
dt

) fwb dA = oVl , (2.25)
A

where T is the circulation around the airfoil defined in the clock-
wise sense familiar in aerodynamics. Equation (2.15) is D'Alembert's
paradox of zero drag in steady flow, and (2.16) is the Kutta-Joukowski
theorem for 1ift. Those results should help build confidence in (2.14)
as the general force law for non-steady two-dimensiona] flow.

A key assumption in our derivation of the Kutta-Joukowski theorem
was that vortex shedding ceases after some time, so the flow becomes

Page 14
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steady in airfoil-fixed coordinates. Violation of that assumption is
one of the defining characteristics of post-stall aerodynamics.

One way vortex shedding can continue indefinitely is for shedding
to occur at both the 12ading and trailing edges of the airfoil. As long
as vorticity shed from the leading edge has sign opposite that shed from
the trailing edge, shedding can continue without violating the vorticity
conservation theorem (2.20). As the two vortex sheets lengthen, they
might even assume an appearance of steadiness in the vicinity of the
airfoil.

Helmholtz developed the holegraph method to study such flows around
flat plates, as illustrated in figure 2.2(a) {(Lamb 1932). Helmholtz
derived the formula

T sin a
F = ——— oV (2.26)
4 + 7sin g

for force per unit length normal to an infinite flat plate (lamina) of
chord c¢. We might have hoped that Helmholtz's solutions become
asymptotically valid for post-stall flows at long times after pitch-up.
Such hope is unwarranted, because the free shear layers of Helmholtz
flows are subject to a Kelvin-Helmholtz instability as shown in figure
2.2(b). Steady-state free-streamline theory predicts a zero-velocity
wake with a uniform pressure equal to the ambient pressure far ubstream.
Eddies resulting from the instability, however, scavenge the wake and
lower the backpressure on the plate.

Equation (2.26) predicts a drag coefficient of 0.88 for a plate
normal to the flow, whereas the measured value is 1.98 (Hoerner 1965).
The 125 percent increase is attributable to nonsteady vortex suction,
not too surprising in view of the origin of aerodynamic forces evident
in (2.21) and (2.22).
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Yortex suction plays an important role in the 1ift of delta wings
at large angles of attack. Indeed the flow around a delta wing is a
prototype for post-stall aerodynamics. Figure 2.3 shows a delta wing
inclined at a substantial angle o to the flow. A plane A traverse
to the delta-wing planform moves with the fluid at speed V. The delta
wing intersects the transverse plane as a slit of varying span b(t),
moving downward at a speed V sin a. Vorticity shed from the leading
edge of the delta wing appears as free vorticity in the transverse
plane. If the delta wing is slender, then the flow in the transverse
plane can be treated like the two-dimensional time-dependent flow of
figure 2.1. In particular, the 1ift per unit length along the delta
wing is given by equation (2.22) evaluated in the fluid-fixed transverse
plane.

There is no fully satisfactory theory for the vortex 1ift of delta
wings. Vortex-1ift calculations rely instead on analogies. Hoerner
(1975) describes an end-plate analogy, whereby the leading-edge vortices
are regarded as acting like end plates, increasing the effective span in
the transverse plane. Polhamus (1971) achieved good correlation with

data on the basis of a leading-edge suction analogy, where the leading-

edge suction that reduces the drag of an attached flow is rotated 900 to
produce 1ift normal to the planform. Neither analogy is convincing as a
basis for a venture into post-stall aerodynamics.

A key difficulty with the concept of vortex 1ift is evident from
equation (2.22): wvortex 1ift arises from the time dependence of free

vorticity in the two-dimensional flow of figure 2.1 or in the transverse
plane of figure 2.3. Steady vortices in such situations exert no net
force on bodies. A satisfactory method for predicting the vortex 1ift
of delta wings should be among the first products of post-stall
aerodynamics.
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Aw 49293
F Y
Figure 2.3. Transverse-plane interpretation of flow over a delta wing.
The flow may be steady in wing-fixed coordinates but is
nonsteady in the fluid-fixed transverse plane.
..
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¢. Vortex Shedding

We have assumed so far that the flow is inviscid, though it may
contain “free" vorticity and “bound“ vorticity representing the surfaces
of bodies. The distinction between bound and free vorticity is peculiar
to the assumption of inviscid flow and would disappear if we were
willing to deal with viscous diffusion. "Bound" vorticity is simply
vorticity in boundary layers, subject to viscous and inertial dynamics
about equally. "Free" vorticity is vorticity that has escaped far
enough from boundaries to be subject mainly to inertial rather than to
viscous dynamics. The escape process is called vortex shedding, meaning
the transformation of bound into free vorticity.

The reason for maintaining a distinction between bound and free
vorticity is that we hope to analyze post-stall aerodynamics using
inviscid flow equations. This hope, however, requires us to postulate a
rule for transforming bound into free vorticity without explicit
reliance on the Navier-Stokes equations of viscous flow. Such a rule is
unlikely to become available for bodies of general shape, where both the
location and rate of vortex shedding are variable. We therefore confine

attention to salient edges, from which vorticity can be expected to shed
almost all the time.

The search for inviscid shedding rules is a challenge for
computational fluid dynamics. Some authors (g;g; Hitzel and Schmidt
1984) invoke compressibility as a shedding mechanism.* Compressibility
will be of no help to us, because we want to study incompressible flows.
It is far from clear, moreover, that compressible effects can mimic
viscous flow separation.

*As did Rayleigh, intersstingly, shortly before Prandtl's 1905 paper on
the boundary-layer concept.
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Another school of thought holds that finite difference schemes by
their very nature adequately simulate the effects of viscosity with
respect to vortex shedding at salient edges (Rizzi and Eriksson 1984).
There is merit to this viewpoint if velocity is one of the advected
quantities. Upwind differencing, in particular, seems almost certain to
project velocity discontinuities (vortex sheets) from a sharp edge into
the computational grid. We have based the two-dimensional computations
presented here on the vorticity equation, however, which sustains zero

vorticity as a solution unless free vorticity is injected deliberately
into the finite-difference grid. We must provide an explicit algorithm
for the the creation of free vorticity.

Qur vortex shedding algorithm is based on the fact mentioned above
that bound vorticity is vorticity in boundary layers. A boundary layer
cannot flow around a sharp edge but must separate from it if the
direction of flow is from the material boundary toward free fluid. The
rate of creation of free vorticity is the integrated flux of boundary-
layer vorticity flowing across the edge.

Figure 2.4(a) illustrates the principles of vortex shedding in two
dimensions when the flow is directed away from the body both above and
below an edge. Consider the situation above the edge, and adopt local

coordinates (x, y) such that x is parallel to the upper surface and
Yy is normal to it. Vorticity can be written everywhere as

w = 3v/dx - du/3y . (2.27)

In the boundary layer, v is small and x-derivatives are small, so on
both counts vorticity can be approximated as

w o= - u/y . (2.28)
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The net vorticity flux across the edge in the upper boundary layer is

§
/ (u-ug) wdy |, (2.29)
0

where § is the depth of the boundary layer, and ug accounts for the
possibility that the upper surface of the body is moving at a speed ug
parallel to itself. Adopting the boundary-layer approximation (2.28)
for w ' and integrating through the boundary layer, we obtain

$
du (ul-uo)z
- f(u-uo)— dy = - ——— (2.30)
ay 2
0

as the expression for net vorticity flux consistent with thin boundary
layers. Here uj is the value of u at the top of the boundary layer,
j.e. the surface slip velocity of inviscid flow theory, while wu, is
the value of u at the boundary consistent with the actual no-slip
boundary condition.

Though (2.30) is based on boundary-layer theory, the formula
contains no explicit reference to viscosity. This supports the hope
that post-stall aerodynamics can be treated by inviscid flow methods as
long as the shedding rule correctly embodies the boundary-layer concert.

Similar reasoning about the underside of the surface leads to the
total vorticity flux expressed in figure 2.4(a). Notice that

(u2 - ug)2  (ug - ug)? (U1 - uz) e - )
= Up (U2 -~ U

2 2

(2.31)

(a - UO)Y ’
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—~ (a)
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2 T T2
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(b)

(up-ug)?

VORTICITY FLUX »

Figure 2.4. Transformation of bound into free vorticity.
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i.e. the net vorticity flux equals the strength <y of the vortex sheet
at the edge times the free-stream velocity relative to the edge averaged
above and below the 1ifting surface.

The situation in figure 2.4(a) is not the only possibility. The
free-stream velocity relative to the edge might be directed inward from
the edge above the surface, below the surface, or both. Figure 2.4(b)
illustrates the consequences of an inward-directed velocity above the
surface. No boundary-layer vorticity sheds from the upper surface, and
only the first term on the left of (2.31) contributes to a vorticity
flux. The simple interpretation of vorticity transformation afforded by
the right of (2.31) is lost, but the phenomenology is clear.

Our vortex shedding rule must specify not only how much free
vorticity is created, but also where it is place in the computational
grid. Figure 2.5 shows how the placement is effected in the code
described in later sections. Free vorticity is injected into the
nearest grid cell lying entirely downwind of the surface from which
vorticity is being shed. ‘

There is, of couse, a certain arbitrariness in this prescription.
We trust that the vortex shedding process is self-equilibrating, such
that shed vorticity erases singularities near edges and proceeds
independently of fine details near the edges. Viscous flow analyses or
comparison with experiments will be needed to validate that trust.
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R

Figure 2.5. Means for deciding where free vorticity is placed in
computational grid.

Page 24 ;




Poseidon Research Report No. 81
3. Numerical Methods for Two-dimensional, Unsteady, Separated Flow
a. Introduction

Methods for numerical modeling of Yift-generated vortex flows can
be roughly divided into those methods that employ discrete elements for
free vorticity, as, for example, Geising (1968), and Hoeijmaker and
Vaatstra (1983) and those that represent free vorticity as a continuous
field, as, for example, Rizzi and Eriksson (1984). We have chosen to
represent vorticity as a continuous field largely because we had much
greater confidence in the stability, accuracy, and physical
reasonableness of solutions produced by Euler solvers than in those
produced by discrete element methods.

Given the choice of a continuous field representation for free
vorticity, a complete predictive code for two-dimensional, unsteady,
separated flow will have three ingredients:

1. A means for representing the effect of a solid obstacle on the
flow velocity,

2. A means for shedding vorticity from the body into the free
vorticity field, and

3. A means for advecting the free vorticity.

The third ingredient can be, and for our work is, a garden-variety Euler
solver. The first and third ingredients may be combined in a code that
employs body-fitted coordinates, but, as we shall see, it is possible to
build a code that models arbitrary bodies without the complexities of
body fitted coordinates. The third ingredient being the foundation upon
which the whole is built, we proceed with a brief description of the
Euler solver.
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b. Advection of Free Vorticity

We have taken, as the starting point for our work, the Posaidan
Hydro code, developed originally in 1976 for the simulation of two
dimensional vortex flows in stratified fluid. The code has been exten-
sively exercised, validated, and refined under a variety of programs for
DARPA and for the U. S. Navy, but the only unclassified description of
the code and its applications is given by St. Cyr (1980). The code has,
over the years, acquired many special features directed toward the
programs for which it was exercised. OQOur first step under the current
program was to gather only the essential nucleus of this software into
an entirely new code. We used an established test case (a vortex pair
in unstratified, inviscid, incompressible fluid) to verify that the
"new" code reproduced exactly the unstratified, inviscid dynamics of the
Hydro code. This done, we had a code which had all the advantages of
many years of testing behind it, but without the breadboard additions
that old codes inevitably acquire.

The Hydro code, and its descendant, LIFTER, are formultated in terms
of vorticity and streamfunction. This formulation has many nice
features for two dimensional flow and is by far the most popular formu-
lation for two-dimensional incompressible flow codes. A code formulated
in terms of vorticity and streamfunction has just two essential ingre-
dients: a scheme for transporting vorticity, and a scheme for computing
the streamfunction given the vorticity.

The advective transport scheme is a derivative of the original
SHASTA scheme of Boris and Book (1973). SHASTA is monotonic for time
steps such that the local Courant number is always less than 0.5. That
is, transport never produces new local extrema in transported field
quantities. Monotonicity is, in fact, the key design requirement for a
whole class of schemes which have come to be called flux-corrected
transport schemes, of which SHASTA is an example. SHASTA is as close to
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being second order accurate in space as it is possible to be without
sacrificing monotonicity and exhibits exceptionally small residual
numerical diffusion. Most schemes that are formally second order
accurate and stable are substantially more diffusive than SHASTA. The
algorithm that is implemented in LIFTER differs from the original SHASTA
only in that a slightly more accurate fiux correction term is employed
in LIFTER. Time differencing is done using a second order Runge-Kutta
(predictor-corrector) scheme.

The streamfunction is computed from vorticity by solving a Poisson
equation:

2y = -

Two issues must be dealt with in solving this equation: representation
of an infinite domain on a finite grid and an efficient way of solving
the difference equations. If all of the voriticity is captured within
the computational domain, an infinite domain may be represented by
computing the value of the streamfunction on the boundary of the
computational domain using a discrete form of the Biot-Savart integral
for the streamfunction, and then solving the Poisson equation subject to
the computed Dirichlet boundary condition. This reasonable strategy was
employed in the Hydro Code as described by St. Cyr (1980). We have
subsequently adopted the approach of solving the Poisson Problem on a
very large grid using fast Fourier transforms. Despite the fact that
the computational domain must be substantially enlarged for this latter
strategy, it is significantly faster than the original . The speed
advantage arises because the operations count for the Biot-Savart
integral is O(N3) while the operations count for the Fast Fourier
Transform is O(N ln N). Furthermore, the Block Cyclic Reduction
algorithm formerly used, while having and operations count that is O(N
in N), involves tridiagonal sweeps that do not vectorize on the CRAY,

Page 27

Al

-~



Poseidon Research Report No. 81
c. Representation of Wing Sections by Bound Vorticity

The velocity field computed by the free vorticity code is different
from the actual velocity field around a solid body by a flow which is
everywhere irrotational except within the solid body. For our purposes,
the solid body will always be a one-dimensional curve within the c-mpu-
tational domain. In order to compute the actual velocity field, we must
obtain a flow that is irrotational everywhere but along the curve and
that cancels along the curve the normal velocity due to free vorticity.

There are a variety of techniques available to compute the required
velocity field, but by far the most attractive are the so-called panel
methods. These methods compute the required velocity field as if it
resulted from a distribution of flow field singularities distributed
along the body. The great power of these methods derives from the fact
that the body is represented by polygonal elements, permitting the
representation of nearly arbitrary geometries.

0f the many possible choices for the flow field singularities, by
far the most natural for the problem at hand is a sheet of vorticity.
Vortex sheet panel codes, as in Raj and Gray {1978), are a standard
technique for the aerodynamics of thin airfoils.

Figure 3-1 illustrates most of the essential features of the panel
code that has been embedded into lifer. The wing is represented as
series of N panels of arbitrary length and orientation, each panel being
a sheet of vorticity of constant, unknown strength. Panel o induces a
normal velocity at a chosen control point on panel g; the value of this
velocity for unit vorticity per unit length on panel o is the
influence coefficient CaB. The sum of all of the induced velocities at
panel B must exactly cancel the normal velocity at panel B due to
the free vorticity. We thus have N equations for the N unknown
panel vortex strengths.
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The matrix of influence coefficients computed by the preceding
prescription will be numerically ill-conditioned, as a consequence of
being nearly singular. This near singularity is a consequence of the
exact singularity of the continuum integral equation being approximated.
The sinqularity of the integral equation is reflection of the well-known
fact that the flow around an airfoil can have an arbitrary net
circutlation. This indeterminacy is resolved in conventional
aerodynamics by insisting that a stagnation point coincide with the
sharp trailing edge of an airfoil. This requirement is commonly known
as the Kutta condition.

If the flow around the airfoil is permitted to separate, the
arguments that lead to the Kutta condition fall apart. From the
absolutely fundamental Kelvin circulation theorem, we know that the
total circulation of the flow must be preserved. If we start with an
airfoil at rest, then the indeterminacy is resolved by insisting the
total circulation of the flow be zero. This condition, which we have
chosen to call the Kelvin condition, is used to replace one of the rows
in the matrix of influence coefficients. )

A1l that has been said so far is reasonable and even obvious, but
some details have been glossed over. For example, the most obvious
choice of control points, the center of each panel, produces an
oscillating distribution of bound vorticity on a flat plate in a uniform
free stream. Moving the control point to the quarter chord of each
panel results in a vorticity distribution that more nearly approximates
the know solution to the continuum equations. This naturally begs the
question as to why the quarter chord and not the three quarter chord?
Or, to put it another way, what is the difference between the quarter
chord and the three quarter chord for a flat plate at 90 degrees angle
of attack? Similarly, which of the equations is to be replaced by the
Kelvin condition?
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We have alleviated the arbitrariness of the choice, at least to
some extent, by solving for the bound vorticity with one arbitrary
choice of control points and for its mirror image, and then averaging
the results. The Kelvin condition in each case replaces a control point
equation at one end of the panel. While the choices are still
arbitrary, the procedure at least preserves any symmetries the problem
may have had before descretization.

A further detail we must deal with is that once we have the
singularity distribution, we must compute the velocity field due to the
singularity distribution at every point in the computational grid.
Calculating this velocity field from a Biot-Savart integral is imprac-
tical, not only because of the operation count, but also because an
impracticably large number of influence coefficients would have to be
stored. The most economical way to generate a velocity field from the
bound vorticity is to assign the bound vorticity to grid points and
solve a Poisson equation as for the streamfunction due to free vorti-
city. This seemingly crude procedure seems to yield remarkably good
results as will be evident from the streamfunction plots in Chapter 4.

d. Conversion of Bound Vorticity into Free Vorticity

In Chapter Two, we discussed at length the physics of our model for
vorticity shedding. Here it remains only to report on the details of
the method by which this shedding model is implemented. The mean velo-
City at the wingtip is computed by interpolating the velocity field on
the grid, and subtracting the velocity of the wingtip, if the wingtip is
not stationary in the grid. The vorticity on the end panel is presumed
not to contribute to the mean velocity at the wingtip. The mean tangent
velocity is computed by dotting the mean velocity with an outward facing
unit tangent vector. The tangent velocity on one side of the wing is
taken to be the mean tangent velocity plus Y/2 and the tangent
velocity on the other side of the wing is taken to be the mean tangent
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velocity minus Y/2, where Y s the bound vorticity at the wingtip.
Given the velocity on either side of the wing, it is a straightforward
matter to compute the rate of shedding from the formulas in figure 2.4.

Once the rate of shedding has been computed, the vorticity is added
to the free vorticity in the grid. In order to ensure that the newly
freed vorticity is not trapped at the wingtip, the vorticity is added to
a control volume that does not contain the wingtip.

This description makes clear a possible weak point in the model.
The rate of vorticity shedding is proportional to the value of the
vorticity on the last panel. For an impulsively started flat plate, the
vorticity at the end of the plate is infinite, and yet the rate of
vorticity shedding computed by our model is dependent upon the
artificially finite value computed as a result of the discretization
process. The only reason to believe that such an arbitrary procedure
could yield correct results is that the process is self-correcting.
That is, one effect of shedding vorticity is to relieve the singularity
at the wingtip. If too small an amount of vorticity is shed, the rate
of shedding at the next time step will be larger. If too large an
amount of vorticity, is shed, the rate of shedding will be smaller.
This kind of feedback mechanism suggests the existence of stability
criteria relating the grid cell, wing panel, and time step size. We
have not yet tested the possible dependence of gross predictions, such
as aerodynamic coefficients, on the wing panelization.

Page 31




Poseidon Research Report No. 81

4. Computational Results for Two-dimensional, Unsteady,
Separated Flow

a. Impulsively Started Flat Plate at 90 degrees Angle of Attack

The first problem for which we exercised LIFTER was a flat plate at
90 degrees angle of attack. The chosen grid was 40 by 40 cells, and the
flat plate was represented by 22 panels of equal length.

Figure 4.1 presents the normal force coefficient history as
predicted by LIFTER compared with the measured average value ({Hoerner,
1975, p. 21-1) and with the prediction of the Helmholtz model (op.
¢it.). There are no time dependent measurements of the force history on
a flat plate that are known to us. Beyond a large starting transient in
the normal force, there is no evidence of oscillatory behavior in the
force coefficient that would be indicative of the formation of a vortex
street. In fact, for the time simulated, the force coefficient
decreases monotonically with time, as would be indicative of the
formation of a stable recirculation cell.

Figure 4.2 presents a series of comparisons of computed streamlines
with aluminum particle streakline photographs and Taneda and Honji 1971.
We can expect the comparison between instantaneous streamlines and
streaklines to be reasonable if the exposure time of the photograph is
short compared to a characteristic time for the unsteadiness of the
flow. Taneda and Honji do not state the exposure time for their
photographs, although we may presumably infer that it is less than the
spacing of their photographs in time, typically 0.5 B/U. The blockage
factor, that is the width of the plate over that width of the test
channel, was less than 10%.

The qualitative behavior of the computed streamlines compares well
with the streakline photographs over the entire series of comparions,
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Figure 4.3. Length of recirculation cell from measurement
and from computation.
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but the recirculation cell from the LIFTER simulation grows signifi-
cantly more slowly than the recirculation cell in the streakline photo-
graphs. Figure 4.3 makes a more quantitative comparison. Taneda and
Honji have inferred the relation

s/c = 0.89(Ut/c)2/3

where s is the length of the recirculation cell and ¢ is the chord
of the plate. Figure 4.3 compares this relation with the length of the
recirculation cell from LIFTER as inferred by taking twice the distance
from the plate of the centroid of the vorticity in half the recircu-
lation cell. The prediction from LIFTER does not follow the simple
power law relationship inferred by Taneda and Honji, but rather grows at
first more quickly and then more slowly than the inferred experimental
relationship. Figure 4.3 also contains results for an oscillating
chord, to be discussed in section C.

Both the photographs and the computed streamlines confirm the
existence of a stable recirculation cell over the entire length of the
LIFTER simulation. For large Reynolds numbers, we infer from figure 10
of Taneda and Honji an inviscid scaling for the critical time:

While the determination of this time from streakline photographs obvi-
ously involves some subjective judgment, we may expect that the LIFTER
computation was simpiy too short to exhibit breakdown of the recircu-
lation cell and consequent rebounding of the force coefficient from its
monotonic decline. It also is not clear, from the paper of Taneda and
Honji, whether the initial breakup of the recirculation cell is a two or
three dimensional phenomenon.
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It would have, of course, been desirable to have a longer
simulation, but, because of the Kelvin condition and because of the
moment calculation, both of which involve integration over the entire
field of vorticity, we are currently forced to stop our simulations when
significant vorticity leaks from the cdge of the computational domain.
We will discuss the economics of these computations further in Chapter
Five.

Figure 4.4 presents plots of the bound vorticity as computed by
LIFTER at various times. Of these, the only one that is readily
interpretable is at t = 0, where the exact solution is known for the
bound vorticity on a flat plate in uniform flow. This result is derived
in Appendix B. The distribution of bound vorticity computed by LIFTER
agrees well with the theoretical prediction for all but the last two
panels, where the assumed constant distribution of vorticity is a poor
approximation to the square root singularity. It can alsc be seen from
figure 4.4 that the separated vortex flow almost immediately reduces the
bound vorticity to a small fraction of its initial value. The residual
concentration of bound vorticity at the end of the wing is of some
interest. We will speculate as to the meaning of this phenomenon in the
last section of this chapter.

The conclusions we may draw from this first comparison of the
predictions of LIFTER with experimental data are not as strong as we
would like. The qualitative behavior of the code predictions is
certainly reasonable. The quantitative behavior of the recirculation
cell is at least not grossly inconsistent with the results of
measurements. We would most like to make a comparison between the
measured and predicted average normal force coefficients, but this
comparison will require a much longer computation than the one presented
here.
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b. Impulsively Started Flat Plate at 45 Degrees Angle of Attack

Despite the fundamental importance of the flat plate at 90 degrees
angle of attack to an understanding of post-stall aerodynamics, the
problem is peculiar because of its symmetry. In order for a vortex
street to appear, it is necessary for some symmetry-breaking instability
to develop. For a flat plate at any other angle of attack, asymmetric
shedding will begin immediately, so that the formation of a long-Tived
recirculation cell is unlikely.

Figure 4.5 presents a sequence of vorticity maps from our next
exercise for LIFTER, a flat plate at 45 degrees angle of attack. It
seems a shame to belabor the elegance of the simple physics in this
figure with technical comment. It must be noted that the aspect ratio
of the pliots is not quite right; the dots along the border of the plots
should be equally spaced, but they are not.

Figure 4.6 presents another striking plot from the same simulation,
this time of the absolute value of vorticity, and this time with the
aspect ratio correctly represented. Next to it is an aluminum flake
flow visualization of the same problem, reproduced from Cantwell (1981).
Although the photograph is obviously in a much later state of
development, the similarity of flow patterns is gratifying. The
shedding frequency in the numerical simulation is obviously very close
to the shedding frequency of the real flow.

Figure 4.7 presents the force coefficient history from this
simulation, and here we begin to see the kind of effects we expect from
the formation of a vortex street. Comparison of the force coefficient
history with the flow maps shows that the shedding process has completed
just slightly more than one complete cycle at the end of the simulation
where the normal force coefficient is rising.
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o, LIFTER

ABSOLUTE VALUE OF VORTICITY
Ut/c =5.90

ALUMINUM FLAKE FLOW VISUALIZATION
(Cantwell, 1981)

-
Figqure 4.6. Flat plate at 45° angle of attack. Comparison of computed
distribution of absolute value of vorticity with aluminum
flake flow visualization.
\..§
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Figure 4.7. Impulsively started flat plate at 45° angle of attack:

force coefficient histories.
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Figure 4.7 also shows some unexpected, and -- perhaps --
disquieting physics in the form of a significant tangent force! The
calculation having been done with an ostensibly inviscid code, the
circumspect numerical modeler would perhaps have done better to have
left this curve off the plot, but there it is, and it deserves some
explanation. First, of course, is the possibility that this prediction
is simply the result of some modeling inaccuracy. After all, despite
the intuitively obvious fact that the tangent force on a flat plate in
inviscid flow should be zero, that this should be so in the numerical
simulation requires the vanishing of a time derivative of a particular
moment of vorticity, with no obvious symmetry in the problem to enforce
this condition.

It is a prediction of ideal fluid mechanics that there is no net
force whatever on a closed body in a uniform freestream. In order to
explain 1ift and drag and in order to predict them with LIFTER, we must
introduce viscous mechanisms, by whatever circuitous route. In
classical aerodynamics, the magical device is the Kutta condition, in
LIFTER, it is the shedding mechanism. The theorems used to compute
forces in LIFTER remain valid if viscosity is included, and LIFTER
contains mechanisms that are manifestly viscous. There is, then, no
good reason to dismiss the predicted tangent force as either physically
or mathematically incorrect.

The distribution of bound vorticity, presented in figure 4.8, shows
no new surprises. The vorticity at the trailing edge bounces up and
down with the cyclic shedding process. As in the plate at 90 degrees
angle of attack, there remains a large concentration of bound vorticity
at the leading edge throughout the simulation.
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c. Impulsively Started Flat Plate with Osciliating Cross Section
at 90 Degrees Angle of Attack

The first two problems in this section are important from the point
of view of understanding and validating the basic model. The underlying
motivation for the current program is the desire to achiave sufficient
active control of the shedding process as to have significant control
over the net forces on a stalled aerodynamic shape. We felt that it was
desirable to get results as early as possible that would indicate the
feasibility of controlling the aerodynamics through manipulation of the
salient edges, whether through oscillating jet flaps or oscillating
mechanical flaps.

With this end in mind, we have performed two simulations of flat
panels with oscillating chord at ninety degrees angle of attack. The
Strouhal number {the ratio of the oscillation frequency to the convec-
tive time scale based on chord) was chosen to be two for one of the runs
and 0.5 for the other. The amplitude of oscillation in both cases was
10% of the chord (that is, the maximum total chord is 1.1 times the
minimum total chord).

The results of these simulations are presented in figures 4.9-4.10.
The normal force coefficient history for the Strouhal number 2 case,
presented in figure 4.10 is in striking contrast to the Strouhal number
0 case previously presented in figure 4.1. Not only the peak normal
force coefficient, but also the mean normal force coefficient is signif-
icantly enhanced by the oscillating chord. The normal force coefficient
history for the Strouhal number one half case also shows augmented mean
1ift, but the augmentation is considerably less striking than for the
Strouhal number 2 case.
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Referring back to figure 4.3, we also see that the recirculation
cell for the plate with oscillating chora grows faster than for the
plate with fixed chord.

We would expect, even for an unseparated flow, a significant effect
from oscillating the chord, if only from acceleration and deceleration
of the changing virtual mass associated with the changing chord. The
virtual mass associated with a flat plate may be readily inferred from
Batchelor (1967) p. 431, equation (6.6.19) to be mpc2/4. The force
associated with the oscillation of the virtual mass is given by

3 1
— (mpc2U/4) = - pUmfc(2A sin(2nft)
at 2

+ 2A2 cos(2nft) sin(2nft)

The normal force coefficient associated with the virtual mass is then
given, for small amplitude oscillations, by

2m2(fc/U) A sin(2nft) = 2m2 Str A sin (2nft)

which, for a Strouhal number of two yields an envelope amplitude of
roughly 4 with an amplitude of 0.1, and an envelope amplitude of roughly
2 for the same amplitude and a Strouhal number of 0.5. These numbers
are not necessarily valid when the flow is separated, as in our
calculations, but they agree reasonably well with the envelope of the
oscillating component of the computed normal force coefficient.

There appears to be significant (greater than fifty percent)
augmentation of the mean normal force coefficients for the cases with
the oscillating chord as compared to the plate with fixed chord. The
mean for all three cases has dropped at a non-dimensional time of 6
below the measured average normal force coefficient for a flat plate at
90 degrees angle of attack.
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d. Conclusions from Two-Dimensional Simulations

Having presented our results, let us now recapitulate and examine
the evidence. Two questions should be answered:

1. Is the model reasonable in the sense that it adequately
predicts reality?

2. What have we learned about separated flow?

In answering the first question, we must admit that the evidence at
our dfsposa1 is not entirely satisfactory in that the runs are shorter
than those we would like to be able to examine. Only in one case, the
flat plate at 45 degrees angle of attack, do we see the kind of periodic
shedding that we expect is responsible for the failure of potential flow
and Helmholtz models to predict the measured drag coefficient of a flat
plate. Even in that case, we have barely one full cycle of the periodic
process to examine, a situation that makes it difficult to draw
conclusions about the mean behavior of the system. Nevertheless, it is
easy to believe that the normal force coefficient in figure 4.7 is
oscillating about the correct mean value.

The qualitative agreement of the computed wake of the flat plate at
forty five degrees angle of attack is certainly evidence that the model
not only predicts the periodic shedding process, but does so correctly.

The only time dependent data available to us are the flow
visualization experiments of Toneda and Honji. For the flat plate at
normal incidence, the persistence of a stable recirculation cell is
evident in the flow visualizations of Toneda and Honji, but, based on
inviscid scaling, the computed recirculation cell grows more slowly
longer than in the experiments.
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Some features of the predictions are not necessarily contradicted
by observation, but certainly run contrary to expectations. The
prediction of significant tangent force coefficient for the flat plate
at forty five degrees angle of attack must be included in this category,
as must be the not unrelated phenomenon of a persistent leading edge
singularity for this calculation.

We have learned from this series of simulations that a model of
vortex shedding that ignores the details of the boundary layer is
capable of making reasonable predictions of the shedding process.
Unlike some other models, our model does not predict instantaneous

relief of edge singularities, but rather that reversed flow persists for
some time.

We have also learned that periodic¢ forcing, such as might be
induced by jet flaps, enhances both the rate of shedding and the mean
1ift coefficient.
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5. Directions for Further Work in Two Dimensions
a. Code Modifications Aimed at Economics

We have been limited, in our first series of simulations, by the
need to capture the entire field of shed vorticity. This need has
arisen both because of the Kelvin condition, and because of our use of
the vorticity theorems of Chapter 1 for the computation of aerodynamic
forces. We can easily keep track of vorticity leaving the computational
domain for purposes of enforcing the Kelvin condition. We cannot keep
track of the x and y moments of vorticity leaving the computational
domain without further assumptions, such as assuming that the vorticity
simply convects with the free stream velocity. Such modifications will
be worthwhile only if we wish to make very long simulations.

The cost of running the LIFTER is currently dominated by the cost
of solving the linear system of equations for bound vorticity. The
solver currently in use for this purpose uses Gauss elimination with
pivoting. Simply switching to a more high1y optimized solver will be
the most cost effective step we can make in obtaining longer urns at an
acceptable cost.

b. Calculations Aimed at Further Understanding of the
Computational Model

We have so far been unable, because of costs, to check the
dependency of results on wing panelization. We shall surely wish to
perform such an experiment when more efficient software for computing
bound vorticity is in place.

We may also wish to check the dependency of results on the details
of the vortex shedding model by ignoring voriticty swept off the lee
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side when the flow at the adge is outward on both the windward and
leeward side of the wing.

c. Calculations Aimed at Further Understanding of the Physics
and of the Model

We would of course, 1ike to see the model duplicate average drag
coefficients for flat plates, and to do this, we expect to need much
langer runs than those presented in Chapter 4. Toneda and Honji mention
that the breakdown of the recirculation cell is an unsymmetrical
process. Such an asymmetry must correspond to an instability of some
kind. Whether, when, and how such an instability might arise in a two-
dimensional numerical experiment present interesting question. The free
vortex sheet may also exhibit a symmetrical instability.

We shall, of course, want to simulate a slender delta wing at angle
of attack. These simulations will provide us with a further opportunity
to compare the model with measurements.

The ultimate goal, of course, is to obtain predictions that are
relevant to active vortex control. We have made tentative steps in this
direction with the runs reported in Chapter 4, but we shall surely want
more extensive results in this area.
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6. Numerical Methods for Three Dimensional Unsteady Flow

The two dimensional work presented so far is, more than anything
else, preliminary work aimed at implementing a three dimensional model.
The understanding we have achieved as a result of the two dimensional
work reported here has carried us a considerable distance in that
direction.

The ingredients for a three dimensional model are much the same as
the ingredients for a two dimensional model: an Euler solver, a means
for enforcing zero normal velocity on embedded surfaces, and a means for
shedding vorticity.

Euler solvers for incompressible, three-dimensional flow are
considerably less common than for incompressible, two-dimensional flow.
Poseidon Research has recently developed one such code, and thiz code
appears to be well suited as a starting point for a three-dimensional
version of LIFTER.

Like LIFTER, Burner uses flux-corrected transport for the advection
step. Unlike LIFTER, Burner is formulated with three components of
velocity as the fundamental field quantities. The fact that Burner does
not explicitly conserve vorticity works to our advantage. In partic-
ular, flows simulated by Burner will separate without the inclusion of
an explicit shedding mechanism. Figure 6.1 presents a field of flow
vectors obtained by simulating a square jet in a square channel with a
square obstruction midway down the channel. The square obstruction is
simulated by adding impulsive forces to the model system. The flow
separates both at the inlet and at the square obstruction.

We would simulate the presence of smbedded surfaces for aerodynamic

calculations in much the same way. We would calculate impulsive forces
that cancel the normal velocity at the embedded surface. Just as for

Page 55

t
i
{




1iX3
JHvNOS

Poseidon Research Report No. 81

*uoL}oNa3sSqo YiLM |auueyd aduenbs ug
33[ auenbs Mo|y |euoLsuswip-334y} pajededas e 4o uotjepnuis apod 43|nj °1°9 aunbr4

ANVIHAIN TVLNOZIHOH NI SALIDOTIA TVLINOZIHOH

nﬂ.lvvw.wv,\
» a.,en..,..,.{
,__.A._.TJTTA..o}

Page 56

13NI
34vnNOs




“v"-" -

Poseidon Research Report No. 81

bound vorticity, the effect of the impulsive forces is non-local, and
calculation of these forces requires the solution of a set of linear
equations. Application of the local effect of the impulses will produce
a velocity field that is neither incompressible nor zerc at the embedded
surface. The solution is completed by solving a Poisson equation for a
velocity potential whose gradient, when added to the velocity field,
will result in a velocity field with all of the desired characteristics.

It is a pleasant circumstance that most of this technology is
already in place, and that the only new software required will be
software to solve for the panel impulses.

Although we are confident that embedded surfaces will shed
vorticity, it is by no means clear that they will do so correctly.
Exploring the actual mechanism by which the code produces shed
vorticity, and its correctness, will constitute a significant part of
the development effort.
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Appendix A
Derivations of Force and Moment Theorems

The two-dimensional force and moment equations, (2.14) and (2.15),
are simple enough to derive in Cartesian component notation. The

corresponding derivations in three dimensions require the use of index
notation.

a. Two Dimensions

In two dimensions, the vorticity equation (2.11) becomes

dw agy  39x
_+’!.Vm D e— o ae— (Al)

at 3x 3y ,

since the "vortex stretching" term g - Vu
absence of gradients in the z-direction.

is zero because of the

Multiply by x and integrate over x and y:

d ow ow
— xw dA + f(xu—+ xv———)dA
dt ax Yy

A A
o9 gy
= J/Yx-—z - x-——) dA
X y
A
The r.h.s. can be rewritten and integrated to the (distant) boundary
of A:
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12 (xgy) > (xgp)|
— (xgy) - gy - — (xg,)
lax 0 gy Y

= - fgy dA + /(xgyﬁx - xgxhy) dC
A C

Ahere n is the unit outward normal from the boundary C. The second
term on the left can be reworked in a similar fashion:
‘a ou 3 BV'
/ — {xuw) - xw— - uw - — (xvw) - xw—; dA
(ax 3X 3y dy
A
= - fuw dA + f(xuwﬁx - wiﬁy) ac ,
A C 7
where use has been made of the continuity equation du/dx + av/3y = 0.

The perimeter C can be made large enough so that g and w are
both zero on it {(w 1is only avected by the fluid, it does not propagate
instantaneously like a potential or even fast like a sound wave). The
line integrals are then zero, and we have

d
-/gydA=— xwdA-/umdA
dt

A A A
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But w = 3v/3x - 3u/3y, so the second term on the r.h.s. becomes
‘ au 3u I
— (uv) -~ v— - u—/ dA
fax X By’
A
3 3V '
= 1= (uv) + v— - u—
ax 3y ay‘
A

= f(‘uvﬁx + (v2 - u2) ﬁy/zf dc
c

Since u and v fall to zero at least as fact as r‘l, the contour
integral is again zero.

We finally have

xw dA

]
Ja\
&
Q
>
"
LLI [~%
o
>‘\‘

from which

d
Fy=-p/gydA=p— Xxw dA
A
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This proves the y-component of (2.14). Proof of the x-component
involves multiplying (Al) by y and proceeding as before.

The definition of moment per unit length in two-dimensional flow
follows from (2.6):

M, = - /(xfy - yf, )8, dA . (A2)
A

To prove the moment relation (2.15), we multiply (Al) by r2 = x2 + yZ
and proceed as before:

Jw W
/r‘zw dA + /(rzu-— + rzv—) dA
X
A

ay
A

3g . 39x
= f(rZ—i-rc~)dA . (A3)
A

Dropping contour integrads as they come, we find for the r.h.s. that

(22 3 |
f —(r gy - ngy - .—(ngx) - Zygx‘ dA
3y

= .2 f(xgy-ygx) dA . (A4)
A
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The second term on the left becomes

~

3 o U oV
/ —(rluw) + —(rvy) - ryf— + —}- 2xuw - 2yve dA
ax 3y IX 9y

= -2 /(xuw+va) dA

A
‘ av au v au)
= -2 flxu— - XU— + yv— -yv-——{ dA
A

A

3x a2y ax dy

3 3u 3, ul
= -2 f{-—(xuv) - UV - Xy— - -—-(x- )
33X X 2
A

oy
3 v 3 v2’
-——(yuv)+uv-yu—+—(y-) dA
3y dy  ax' 2 ’
‘ oV ou
= -2 /xv-—-+yu—-—;dA
(May 7 ax
A
‘a v 3 u2]
= -2 f — Xx- +-(y-)$dA
lay 2 ax'2
A
= 0 . {A5)
»
'y
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We have repeatedly made use of the assumption that quanities like xve,
yu2, etc. fall to zero factor than r-1. That is so by virtue of (2.20),
which implies that velocity falls as r-¢  far from the region occupied
by vorticity.

Combining (A2)-(A5), we obtain

=
Nl o
ala.

d/ﬁ w dA
A

which is the same as (2.15).
b. Three Dimensions
The proofs of the two-dimensional force and moment theorems are

fairly complicated. Matters get out of hand in three dimensions unless
index notation is used. With index notation, the ith components of

velocity and vorticity are represented as dj and i respectively.
The curl involves the permutation symbol ejjk, SO that

auy
wi T &ijk— - (A6)
BXJ'
€1 jk is +1 1if 1ijk are an even permutation of 123, -1 if ijk are
an odd permutation of 123, and zero if two of the indices are the same.
Another symbol of great utility is the Kronecker delta ¢ij, which is
+1 if 1 and j are equal and zero if not. The continuity equation
can thus be written as

au4
Sij — = 0 . (A7)
X5
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Whenever indices are repeated, as in (A6) and (A7), they are summed over
1, 2, 3 (the Einstein summation convention).

g and & are connected by the identity

eijk €mn = 3jm Skn - Skm Sjn (A8)

used frequently in the following proofs. Often we must rearrange the
indices of € to apply (A8). From the definition of €,

eikj = - €ijk » ekij = Eijk - (A9)

0dd and even permatations of ¢€'s indices, exemplified by (A6), are
used in the following without comment.

In index notation, the three-dimensional force theorem (2.14)
becomes

-
iy
1]

- ergi av

v

pd

-—— €ijk xjwg dV , (A10)
2 dt .

v

where the first equality follows from the definition (2.5) of 'f (with

f = pg), and the second is to be proved.

The proof is based on the vorticity equation (2.11), which becomes

dwk owk Jduk 39n
— um_ - wm.— = gkmn_—
ot me aXm BXm
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in index notation. Take the cross-product with x:

dwy wk Uk 99n
€ijk Xj— + €ijk Xj (um— - mm—) = &ijk Ekmn Xj— - (A11)
ot aXm BXm BXm
Apply the -8 identity to the r.h.s.:
a9n 39n
€kij Skmn Xj — = (8im 8&n - Sjn Sinlxj —
me IXm
993 a9
= Xj — - X§ —
J J
dX§ 9Xj
9 3
= — (xj95) - 95657 - — (xj9i) * 9idj;
X X j
3 d
= — (xj9i) - — (xj9§) + 297 , (Al2)
oXj 3Xj

where we have used the facts that 23xj/8xj = §jj and §j; =
1+1+ = 3. Rework the second term on the 1.h.s. in like fashion:
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dwk duk
€ijk Xj (um—— - wm— )
aXm aXm

$

3
* Sk (Xjupwg) = Up wk Sjim
m

3
- — (Xjopuk) - wp Uk 6jms
9Xm

3
= — ;Eijk Xj (upy - wmuk); - 2gjjk uj wy - (A13)
M
Moreover,
dup
€ijk Uj wk = €ijk €kmn Uj—
Xm

up
= (Sim&jn = Sjmsin) uj—
me
U duq 3 Ujuj 9 :
j i
= u— - uj— = — 33 (u-iuJ') (A14)
X X axj 2 3§

Gathering (All)-(Al4), integrating over an arbitrarily large volume
V, and eliminating surface integrals involving wj or 9d; , we obtain
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d
2/91dV=—f€1jka'wde
dt
v

v
Uju4
-2 fJJﬁi-u-iuJ-ﬁj dsS
2
S

Velocity components uj fall at least as fast as r-2 ip three
dimensions, so the surface integral vanishes, and we have proved (Al0).

The definition of moment (2.6) and the moment theorem (2.17)
require us to prove that

ld

feijk Xj 9k dv = ;; feijk Xj (Ekmnxm%) dv (A15)

v Y

The proof is complicated and will only be sketched here. Cross the
vorticity equation twice with X:

dn duwp dup
®ijk Xj Ekmn Xm —— * €jjk Xj €kmn Xp (“p — -wp —)
at X axX
p p
agq
€ijk Xj €kmn *m €npqg — - {Al16)
SXp
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Manipulate the r.h.s.:

agq )
€ijk Xj (enkm €npq  *m g-—
X
P

Eijk Xj (ka 8mq = Smp Skq) Xmg;‘
p

Eijk Xj (Xm‘—— - Xm-——

39m agq )
3Xk ‘ BXD

0
S

ik laxk

XjXmdm) = Xj  9m Skm - Xm Im S

3

- — (Xjxm9k) *+ Xj Ik Smm * *m 9k ij§
Xk

3 3 -
€ijk }""(ijmgm) - — (XjXmgk)
3Xk aXm

- Xj 9k + 3xj gk + Xj gk;

The second term on the left of (Al6) can be written entirely in terms of
Integrating (Al5) over all space, we find that
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d

€ijk Xj €kmm Xm wn 4V
dt

= 3 fEiijjgde ,

v

where the surface integrals vanish provided that wj

and g5 are
confined to a finite domain, and that XjUmun

falls to zero faster than
r‘z, which is always true. This confirms (Al5) and hence (2.17).
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Appendix B

Bound Vorticity on a Flat Plate at Angle of Attack
in Potential Flow

Bound vorticity must exactly cancel the normal component of
freestream velocity; that is,

¢

Y(x')dx'
Usina=/——f0r05xsc
2m(x-x")

0

Apply the Glauert transformation

c
x' = —(1 -cos8') ,
2

so that

1 v(9') sin @' d¢'
Usina=--/
cos 8' - cos 8

Use the fact that

™

/‘ cos ng' de' m sin no
cos 8' - cos@ sin @
0

to guess that
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Y(8') sing' = As + B cos '

Ay must be zero to satisfy the circulation theorm. Then

Usina = By/2

Thus

1 - 2x/C
Y = 2V singctn 9 = U sin

V(x/c)[1-(x/¢)]







